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Abstract. As computing resources continue to improve, global solutions for larger size
quadrically constrained optimization problems become more achievable. In this paper, we focus on
larger size problems and get accurate bounds for optimal values of such problems with the
successive use of SDP relaxations on a parallel computing system called Ninf (Network-based
Information Library for high performance computing).
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1. Introduction

Quadratic optimization is known as one of the most important areas of nonlinear
programming. In addition to its numerous applications in engineering, a quadratic
optimization problem (abbreviated by QOP) covers various important nonconvex
mathematical programs such as 0–1 linear and quadratic integer programs, linear
complementarity problems, bilevel quadratic programs, linear and quadratic frac-
tional programs, and so on. The general class of QOPs can be expressed in the
following form:

Tmax c x
(QOP) (1)U T Ts.t. g 1 2q x 1 x Q x < 0 (, 5 1, . . . , m) ,, , ,

n n n3nwhere c [R , q [R and Q [R (, 5 1, . . . , m). When a given QOP has a, ,
T Tquadratic objective function such as g 1 2q x 1 x Q x, we can transform it into0 0 0

QOP (1) by replacing the quadratic objective function with a new variable t and
T Tadding g 1 2q x 1 x Q x 5 t to the set of constraints. Therefore, (1) is a general0 0 0

form for quadratically constrained quadratic programs. Pardalos and Vavasis [16]
showed that even the simplest quadratic program

2 Tminh2x 1 c x : Ax < b, x > 0j1
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is an NP-hard problem. Additional quadratic constraints complicate the problem
significantly.

As one solution approach to QOP (1), Kojima and Tunçel [9] established a
theoretical framework of two types of successive convex relaxation methods
(abbreviated by SCRMs); one is based on the lift-and-project LP (linear program-
ming) relaxation and the other based on the SDP (semidefinite programming)
relaxation. We can regard SCRMs as extensions of the lift-and-project procedure,

´which was proposed independently by Lovasz and Schrijver [11] and Sherali and
Adams [20] for 0–1 integer programs, to QOP (1).

We denote the feasible region of QOP (1) by F, that is,
n T TF ;hx [R : g 1 2q x 1 x Q x < 0 (, 5 1, . . . , m)j ., , ,

Here we suppose that F is bounded and is included in a known compact convex set
C , i.e., F #C . Starting from the initial convex relaxation C of F, an SCRM0 0 0

successively constructs tighter convex relaxations C (k 5 1, 2, . . .) of F with thek

successive use of the lift-and-project LP or SDP relaxation. Therefore, maximizing
Tthe linear objective function c x of QOP (1) over C (k 5 0, 1, 2, . . .), wek

successively obtain better upper bounds hz (k 5 0, 1, 2, . . .)j for the maximalk

objective function value of QOP (1). While the SCRMs proposed by [9] enjoy the
1`global convergence property that > C 5 the convex hull of F, they involve ank50 k

infinite number of semi-infinite LPs or SDPs to generate a new convex relaxation Ck

of F. To resolve this difficulty, Kojima and Tunçel [10] proposed implementable
versions of SCRMs by bringing two new techniques, ‘discretization’ and ‘localiza-
tion’, into their theoretical framework. Their techniques allow us to solve finitely
many LPs or SDPs having finitely many inequality constraints, so that the
discretized-localized versions are implementable on a computer. However, they are
still impractical because as a more accurate upper bound is required for the maximal
objective function value of QOP (1), not only the number of LPs or SDPs to be
solved but also their sizes explode quite rapidly. More recently, Takeda et al. [24]
presented practical SCRMs, which overcame such a rapid explosion by further
slimming down the discretized-localized SCRMs. Although these practical methods
are no more guaranteed to achieve an upper bound with a prescribed accuracy, the
numerical results reported in the paper [24] are promising.

In this paper, we propose parallel versions of practical SCRMs. For constituting
C (k 5 1, 2, . . .), SCRMs generate a large number of LPs or SDPs at each iteration.k

Our parallel implementation of SCRMs process those multiple LPs or SDPs
simultaneously using multiple processors. To enhance the effect of parallel
computing, we reduce the work of a client machine, and also decrease communica-
tion between processors as much as possible. We implement a highly parallel
algorithm on a client-server based parallel computing system called Ninf (Network-
based Information Library for high performance computing) [18,19]. Moreover, our
parallel implementation of SCRMs adopt new construction for C (k 5 1, 2, . . .) sok

that the number of constraints of each LP or SDP is considerably decreased. As a
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result, we can deal with some larger size QOPs, which existing SCRMs cannot
process.

This paper consists of five sections. In Section 2, we introduce basic discretized-
localized SCRMs with the use of the lift-and-project LP and SDP relaxations, and
present a serial implementation of SCRMs. In Section 3, we present new variants of
discretized-localized SCRMs suitable for parallel computing, and show a parallel
implementation of the new discretized-localized SCRMs. In Section 4, we report its
numerical results implemented on Ninf. In Section 5, we give some concluding
remarks.

2. Successive convex relaxation methods

We will overview a basic discretized-localized SCRM according to the recent paper
[24], which discussed some implementation details of discretized-localized SCRMs
and gave preliminary numerical results. We introduce a standard serial algorithm of
discretized-localized SCRMs in Section 2.1, and we present some basic properties
on the algorithm in Section 2.2.

2.1. PRELIMINARIES

The previous works [8–10, 24, 25] of SCRMs handled general quadratic optimi-
zation problems (abbreviated by QOPs) with the following form:

Tmaxhc x : x [Fj , (2)

where F ;hx [C : qf(x; g, q, Q)< 0 (;qf(? ; g, q, Q)[3 )j, C ; a given com-0 F 0

pact convex set including F; we assume that C is represented in terms of0

linear inequalities when we are concerned with SCRMs using the lift-and-
project LP relaxation, while we assume that C is represented in terms of linear0

matrix inequalities when we are concerned with SCRMs using the SDP
T T n Trelaxation, qf(x; g, q, Q);g 1 2q x 1 x Qx (;x [R ), 3 ;hg 1 2q x 1F , ,

Tx Q x : , 5 1, . . . , mj.,

To describe a basic discretized-localized SCRM, we introduce the following
n nnotation: 6 , the set of n 3 n symmetric matrices; 6 , the set of n 3 n positive1

semidefinite symmetric matrices; Q ?X ; the inner product of two symmetric
n¯matrices Q and X, i.e., Q ?X ;o o Q X ; D 5 hd [R : idi5 1j (the set of uniti j ij ij

n ¯vectors in R ); D ,D, a finite set of unit direction vectors; e , the ith unit0 i

coordinate vector (i 5 1, . . . , n).

n n¯For ;d [D , ;d [D, ;x [R and ; compact convex subset C of R , we define0 0
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T
a(C, d); suphd x : x [Cj ,

T,sf(x; C, d); d x 2a(C, d) , (3)6T Tr2sf(x; C, d , d);2(dl x 2a(C , d ))(d x 2a(C, d)) .0 0 0 0

¯We call ,sf(?; C, d) a linear supporting function for C in a direction d [D,
r2sf(?; C, d , d) a rank-2 (quadratic) supporting function for C in a pair of direcions0

¯d [D and d [D. Let0 0

L ¯3 (C, D);h,sf(?; C, d) : d [Dj, (;D #D ) ,
(4)J2 ¯3 (C, D , D);hr2sf(?; C, d , d) : d [D , d [Dj (;D #D ) .0 0 0 0

Now we summarize a basic discretized-localized SCRM (Algorithm 2.1 below)
proposed by [10, 24]. At each iteration (say, the kth iteration) of the basic SCRM,

¯we choose a finite direction-set D #D, compute a(C , d) for ;d [D , andk k k
2construct a function-set 3 (C , D , D ) using a(C , d ) (;d [D ) and a(C , d)k 0 k 0 0 0 0 k

2 L(;d [D ). Note that 3 53 (C , D , D )<3 (C , D ) induces valid inequalitiesk k k 0 k 0 0

for the kth iterate C . That is, any function qf(?; g, q, Q) of 3 satisfiesk k

qf(x; g, q, Q)< 0 for every x [C .k

Since C was chosen to include F at the previous iteration, each qf(x; g, q, Q)< 0k

serves as a (redundant) valid inequality for F; hence F is represented as

F 5 hx [C : qf(x; g, q, Q)< 0 (;qf(?; g, q, Q)[3 <3 )j . (5)0 F k

We then apply the lift-and-project LP or SDP relaxation to the region F with the
representation of (5), and obtain the region

n
'X [6 such thatL

F̂ (C , 3 <3 )5 x [C : TH J0 F k 0 g 1 2q x 1Q ?X < 0 (;qf(?; g, q, Q)[3 <3 )F k

5 a lift-and-project LP relaxation of F

with the use of the representation 3 <3 (6)F k

or
T

n 11n1 x'X [6 such that [6 ,S D 1ˆ x XF(C , 3 <3 )5 x [C : ,0 F k 05 6T
g 1 2q x 1Q ?X < 0 (;qf(?; g, q, Q)[3 <3 )F k

5 an SDP relaxation of F with the use of the representation

3 <3 . (7)F k

Each region corresponds to the (k 1 1)th iterate C . By definition, it is clear thatk11

C is a convex subset of C and that F #C .k11 0 k11

ALGORITHM 2.1. (Serial implementation of a basic discretized-localized SCRM)
¯Step 0: Let D #D. Compute0

T
a(C , d )5maxhd x : x [C j (;d [D ) ,0 0 0 0 0 0
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Land construct 3 (C , D ) according to (3) and (4). Let C 5C and k 5 1.0 0 1 0

Step 1: Compute an upper bound z of the maximum objective function value ofk
TQOP (2) by z 5maxhc x : x [C j. If z satisfies some termination criteria,k k k

then stop.
¯Step 2: Choose a finite direction-set D #D. Computek

T
a(C , d)5maxhd x : x [C j (;d [D ) .k k k

2 LStep 3: Construct a set 3 53 (C , D , D )<3 (C , D ) according to (3) andk k 0 k 0 0

(4).
Lˆ ˆStep 4: Let C 5F (C , 3 <3 ) or C 5F(C , 3 <3 ).k11 0 F k k11 0 F k

Step 5: Let k 5 k 1 1, and go to Step 1.

TNote that the problem maxhd x : x [C j to be solved in Step 0 is either an LP or an0 0

SDP since we have assumed that C is represented in terms of either linear0

inequalities or linear matrix inequalities. Also, in Step 2, we solve LPs over the
Lˆpolyhedral feasible region C 5F (C , 3 <3 ) described in terms of lineark 0 F k21

ˆinequalities or SDPs over the convex feasible region C 5F(C , 3 <3 )k 0 F k21

described in terms of linear matrix inequalities to obtain a(C , d) for ;d [Dk k

(k 5 1, 2, . . .). We will give a termination criteria used in our numerical experiments
in Section 4.2. Algorithm 2.1 above lacks a description for the direction-sets Dk

(k 5 0, 1, 2, . . .). In previous works [9, 10, 24, 25], SCRMs commonly utilized D0

such as

D 5 he , . . . , e , 2e , . . . , 2e j , (8)0 1 n 1 n

¯and adopted various kinds of direction-sets D #D (k 5 1, 2, . . .).k
¯Algorithm 2.1 with the above choice of D and D #D (k 5 1, 2, . . .) generates a0 k

sequence of convex sets C #C (k 5 1, 2, . . .) and a sequence of real numbers zk 0 k

(k 5 1, 2, . . .) satisfying

C $C $C $F (k 5 1, 2, . . .) ,0 k k11

T
z > z >z*; suphc x : x [Fj (k 5 1, 2, . . .) .k k11

¯If we took D 5D (k 5 1, 2, . . .), C (k 5 1, 2, . . .) would converge to the convexk k

hull of F and z (k 5 1, 2, . . .) to an optimal value z* of QOP (2) as k →`.k
¯However, such SCRMs with D 5D (k 5 1, 2, . . .) are conceptual and not imple-k

mentable, because they involve an infinite number of LPs or SDPs to be solved at
each iteration. See [9] for more details of conceptual SCRMs.

To implement Algorithm 2.1 on a computer, it is necessary to choose a finite set
of directions for D at the kth (k 5 1, 2, ., . .) iteration. In the remainder of the paper,k

we take

D ;hb (u ), b (u ), i 5 1, 2, . . . , nj (9)k i1 k i2 k

with a parameter u [ (0, p /2] according to the paper [24]. Here,k
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c cos u 1 e sin u c cos u 2 e sin ui i
]]]]] ]]]]]b (u )5 , b (u )5i1 i2n (u ) n (u )i1 i2

n (u )5 ic cos u 1 e sin u i , n (u )5 ic cos u 2 e sin u i .i1 i i2 i

2 2Then 3 (C , D , D ) consists of 4n quadratic functions such thatk 0 k

r2sf(x; C , 2e , b (u )), r2sf(x; C , e , b (u ))k j i1 k k j i2 k
2 r2sf(x; C , e , b (u )), r2sf(x; C , 2e , b (u ))3 (C , D , D )5 (10)k j i1 k k j i2 kk 0 k 5 6

i 5 1, . . . , n, j 5 1, . . . , n

See (3) and (4). We will call Algorithm 2.1 DLSLP if it takes the finite direction-sets
D (k 5 0, 1, 2, . . .) introduced above and the lift-and-project LP relaxationk

L
F̂ (C , 3 <3 ) in Step 4, while we call Algorithm 2.1 DLSSDP if it takes the0 F k

ˆfinite direction-sets D (k 5 0, 1, 2, . . .) above and the SDP relaxation F(C , 3 <k 0 F

3 ) for C in Step 4.k k11

We choose u 5p /2 at the first iteration of Algorithm 2.1. In this case, the1

vectors b (u ) and b (u ) of D turn out to be the ith unit coordinate vector e andi1 1 i2 1 1 i

its minus 2e , respectively. Then, the values a(C , e ) and 2a(C , 2e ) correspondi 1 i 1 i

upper and lower bounds for the variable x , respectively. Hence the seti
23 (C , D , D ) constructed in Step 3 of Algorithm 2.1 contains all rank-2 quadratic1 0 1

functions induced from the pairwise products of lower and upper bounding
constraints for variables x (i 5 1, 2, . . . , n). These constraints correspond toi

underestimators and overestimators of quadratic terms x x (i, j 5 1, 2, . . . , n), whichi j

were introduced in [13] and have been used as lower (or upper) bounding techniques
of some branch-and-bound methods (for instances, see [17,28]). We also see that
both b (u ) and b (u ) (i 5 1, . . . , n) approach to the objective direction c as u → 0.i1 i2

2.2. SOME PROPERTIES OF SCRMs

Two important key words in this section are ‘linearized’ and ‘convexified’. To
explain these words, we will utilize Lemma 2.2, Examples 2.3 and 2.4 below.

nWe write the set 4 of convex quadratic functions on R and the set + of linear1
nfunctions on R as

n n4 ;hqf(?; g, q, Q) : g [R, q [R , Q [6 j ,1 1

n+ ;hqf(?; g, q, Q) : g [R, q [R , Q [Oj ,

respectively. Let c.cone(3 ) denote the convex cone generated by a set 3 of
quadratic functions;

,

c.cone(3 ); O l p (?) : l > 0, p (?)[3 (i 5 1, 2, . . . , , ), , > 0 .H Ji i i i
i51
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1LEMMA 2.2. (Theorem 2.4 and Corollary 2.5 of Kojima and Tunçel [9])
Lˆ(i) F (C , 3 <3 ), hx [C : p(x)< 0 (;p(?)[ c.cone(3 <3 )>+ )j,0 F k 0 F k

ˆ(ii) F(C , 3 <3 ), hx [C : p(x)< 0 (;p(?)[ c.cone(3 <3 )> 4 )j.0 F k 0 F k 1

EXAMPLE 2.3 (Figure 1). Let

C ;h(x , x ) : 0< x < 1, 0< x < 1j ,0 1 2 1 2

232 2 ]H S D J3 ; 2x , x 2 1, 2x , x 2 1, 2(x 2 1) 2 (x 2 1) 1 ,F 1 1 2 2 1 2 4
F ;h(x , x )[C : qf((x , x ); g, q, Q)< 0 (;qf(?; g, q, Q)[3 )j1 2 0 1 2 F

232 2 ]H S D J5 (x , x ) : 0< x < 1, 0< x < 1, 2(x 2 1) 2 (x 2 1) 1 < 0 .1 2 1 2 1 2 4

The shaded area of Figure 1 illustrates the feasible region F. Take u 5p /2 at the1

first iteration of Algorithm 2.1. Then Step 3 of Algorithm 2.1 constructs a finite set
2 2 23 (C , D , D ) of quadratic functions including x 2 x and x 2 x . The addition1 0 1 1 1 2 2

2 2of x 2 x < 0 and x 2 x < 0 to the nonconvex quadratic inequality constraint1 1 2 2

232 2 ]S D2(x 2 1) 2 (x 2 1) 1 < 0 (11)1 2 4
2involved in the description of F removes the nonconvex quadratic terms 2x and1

2
2x of (11), and generates a linear inequality2

23
]x 1 x 2 < 0 . (12)1 2 16

Since

23
]x 1 x 2 [ c.cone(3 <3 )>+ ,1 2 F 116

Figure 1. Feasible region F of Example 2.3.

1 Kojima and Tunçel [9] presented a stronger result in which the equalities hold in (i) and (ii) below. Their
proof for the . part is incomplete but the , remains valid. See also Fujie and Kojima [5].
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we see by Lemma 2.2 that any point x of a lift-and-project LP relaxation
LˆC 5F (C , 3 <3 ) satisfies (12). As we see in Figure 1, the linear inequality2 0 F 1

(12) cuts off the initial convex relaxation C of the feasible region F effectively. We0

may regard the inequality (12) as a linear relaxation of the nonconvex quadratic
2 2constraint (11) with the help of two quadratic functions x 2 x and x 2 x in1 1 2 2

2 23 (C , D , D ). We say that the nonconvex quadratic function 2(x 2 1) 2 (x 21 0 1 1 2
2 23

]1) 1 ( ) in 3 is linearized with the help of quadratic functions inF4
23 (C , D , D ). The set c.cone(3 <3 )>+ consists of all linearizations of1 0 1 F 1

quadratic functions qf(?; g , q , Q )[3 with the help of quadratic functions in, , , F
23 (C , D , D ).1 0 1

EXAMPLE 2.4 (Figure 2). Let

C ;h(x , x ) : 0< x < 1, 0< x < 1j ,0 1 2 1 2

12 2 ]H J3 ; 2x , x 2 1, 2x , x 2 1, x 2 x 2 ,F 1 1 2 2 1 2 4
12 2 ]H JF ; (x , x )[C : x 2 x 2 < 01 2 0 1 2 4

12 2 ]H J5 (x , x ) : 0< x < 1, 0< x < 1, x 2 x 2 < 0 .1 2 1 2 1 2 4

As in the previous example, we take u 5p /2 and construct a finite set1
2 23 (C , D , D ) including the quadratic function x 2 x in Step 3 of Algorithm 2.1.1 0 1 2 2

2 2 2 1
]Now we can remove the nonconvex quadratic term 2x of the function x 2 x 22 1 2 4

2in 3 by adding the quadratic function x 2 x to generate a convex quadraticF 2 2
2 1

]function x 2 x 2 in c.cone(3 <3 ). Hence we know that1 2 F 14

12ˆ ]H JC 5F(C , 3 <3 ), (x , x )[C : x 2 x 2 < 0 .2 0 F 1 1 2 0 1 2 4
2 2 1

]Thus the quadratic function x 2 x 2 in 3 is convexified with the help of the1 2 F4
2 2quadratic function x 2 x in 3 (C , D , D ). The set c.cone(3 <3 )> 42 2 1 0 1 F 1 1

Figure 2. Feasible region F of Example 2.4.
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consists of all convexifications of quadratic functions qf(?; g , q , Q )[3 with the, , , F
2help of quadratic functions in 3 (C , D , D ).1 0 1

Generally, to linearize (or convexify) each quadratic function qf(?; g , q , Q ) of, , ,

3 , the DLSLP and DLSSDP utilize an ‘atomic rank-1’ quadratic function withF
2only one quadratic term x x in c.cone(3 (C , D , D )), which is constructed as ai j k 0 k

nonnegative combination of two functions r2sf(?; C , 2e , b (u )) andk j i1
2r2sf(?; C , e , b (u )) in 3 (C , D , D ), such thatk j i2 k 0 k

n (u ) n (u )i1 i2
]] ]]p (x); r2sf(x; C , 2e , b (u ))1 r2sf(x; C , e , b (u ))ij k j i1 k j i22 sin u 2 sin u (13)

T T T 6
5 x e e x 1 (a x 1b ) .i j ij ij

Here

1
]]a 5 ha(C , 2e )1a(C , e )jcij 0 j 0 j2 tan u 1
]1 ha(C , 2e )2a(C , e )je0 j 0 j i2

1 ]]1 hn (u )a(C , b (u ))2n (u )a(C , b (u ))je ,i2 k i2 i1 k i1 j2 sin u
1
]]b 52 hn (u )a(C , 2e )a(C , b (u ))1n (u )a(C , e )a(C , b (u ))j .ij i1 0 j k i1 i2 0 j k i2 2 sin u

(14)
2A nonnegative combination of some other two functions in 3 (C , D , D ) leads tok 0 k

another ‘atomic rank-1’ quadratic functions with only one quadratic term 2x x asi j

n (u ) n (u )i1 i29 ]] ]]p (x); r2sf(x; C , e , b (u ))1 r2sf(x; C , 2e , b (u ))ij k j i1 k j i22 sin u 2 sin u
T T T 69 952x e e x 1 (a x 1b ) (i, j 5 1, 2, . . . , n) .i j ij ij

(15)
n n9 9Here a [R and b [R have similar representations to a [R and b [R givenij ij ij ij

9in (14), respectively. We see by definition that p (x), p (x)[ c.cone(3 ) forij ij k

i, j 5 1, . . . , n. Hence c.cone(3 <3 ) includes the following linear function g (x).F k ,

(i, j ) (i, j )9g (x); qf(x; g , q , Q )1O Q p (x)2O Q p (x), , , , ,1 ij ,2 ij
(i, j ) (i, j )

T(i, j ) (i, j ) (i, j ) (i, j )9 9 65 g 1O Q b 2O Q b 1 2q 1O Q a 2O Q a x ,, ,1 ij ,2 ij , ,1 ij ,2 ijS D S D
(i, j ) (i, j ) (i, j ) (i, j )

(16)
(i, j )where Q denotes the (i, j)th element of the matrix Q and, ,

(i, j ) (i, j ) (i, j ) (i, j )Q if Q . 0 Q if Q , 0(i, j ) (i, j ), , , ,Q 5 Q 5H H,1 ,20 otherwise , 0 otherwise .

Thus we obtain g (?)[ c.cone(3 <3 )>+ with the help of quadratic functions in, F k
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23 (C , D , D ), and an associated linear valid inequality g (x)< 0 for the feasible1 0 1 ,

region F of QOP (2). In general, we can expect that c.cone(3 <3 )>+ involvesF k

linearizations of the function qf(?; g , q , Q )[3 which induce more effective valid, , , F

inequalities than g (x)< 0 constructed above.,

Similarly we derive a convexification of each quadratic function qf(?; g , q , Q )[, , ,

3 . In this case, we restrict ourselves to a nonconvex part of qf(?; g , q , Q )[3 .F , , , F
1 2 1Suppose that Q 5Q 1Q with a positive semidefinite Q and a negative semidefi-, , , ,

2nite Q . Then we see that,

1 2qf(?; g , q , Q )5 qf(?; g , q , Q )1 qf(?; 0, 0, Q ) ., , , , , , ,

2Now we can apply the same argument as above to construct a linearization g (?) of,
2 9qf(?; 0, 0, Q ) with the help of ‘atomic rank-1’ quadratic functions p (?) and p (?), ij ij

1 2(i, j 5 1, 2, . . . , n). Finally we obtain qf(?; g , q , Q )1 g (?)[ c.cone(3 <3 )>, , , , F k

4 .1

3. Parallel implementation of SCRMs
2In Step 2 of Algorithm 2.1, 2n problems (LPs or SDPs) involving 4n additional

2quadratic constraints are generated for constructing 3 (C , D , D ). It should bek 0 k

emphasized that these 2n problems are independent and they can be processed in
parallel. In this section, we consider parallel computation of those problems.
Although parallel computation is much help to reduce computational time drastical-

2ly, 4n constraints of each problem become an obstacle when we solve a large size
QOP (2). In Section 3.1, we design new SCRMs so that each LP or SDP has a fewer

2number of constraints than 4n . Then, in Section 3.2, we will modify Algorithm 2.1
and present a parallel algorithm for a client-server based parallel computing system.

3.1. AN EFFECTIVE TECHNIQUE FOR REDUCING INEQUALITIES

In Step 2 of Algorithm 2.1, LPs or SDPs over a feasible region C are constructed.k

In order to reduce the number of constraints of each LP or SDP, we devise different
2constructions for D , D (k 5 1, 2, . . .) and 3 (C , D , D ).0 k k 0 k

, ,We first introduce new notation. Let l , . . . , l denote the n eigenvalues of the1 n

coefficient matrix Q of the , th quadratic constraint of QOP (2), and let L denote, ,
, ,a diagonal matrix diag(l , . . . , l ). Then there exists a real orthogonal matrix P1 n ,

Tsuch that P Q P 5L . Define the sets I (, ) and I (, ) (, 5 1, . . . , m) as, , , , 1 1

I (, ); the set of indices corresponding to positive diagonal1
,elements of L , that is, l . 0 for ;i [ I (, ) ,, i 1

I (, ); the set of indices corresponding to negative diagonal2
,elements of L , that is, l , 0 for ; j [ I (, ) ., j 2

From the definition, we see that I (, )# h1, 2, . . . , nj, I (, )# h1, 2, . . . , nj and1 2

I (, )> I (, )5 5. Define new vectors with a parameter u [ (0, p /2]:1 2



PARALLEL IMPLEMENTATION OF SUCCESSIVE CONVEX RELAXATION METHODS 247

c cos u 1 (P e ) sin u c cos u 2 (P e ) sin u, i , i, ,]]]]]] ]]]]]]b (u )5 , b (u )5 ,i1 i2, ,
n (u ) n (u )i1 i2

, ,
n (u )5 ic cos u 1 (P e ) sin u i , n (u )5 ic cos u 2 (P e ) sin u i .i1 , i i2 , i

Now we are ready to propose different constructions of D , D (k 5 1, 2, . . .) and0 k
23 (C , D , D ):k 0 k

SD ;hP e , 2P e , i [ I (, ), , 5 1, . . . , mj ,0 , i , i 2

S , ,D ;hb (u ), b (u ), i [ I (, ), , 5 1, . . . , mj ,k i1 k i2 k 2

, ,r2sf(x; C , 2P e , b (u )), r2sf(x; C , P e , b (u ))2 S S k , i i1 k k , i i2 k 63 (C , D , D );H JS k 0 k i [ I (, ), , 5 1, . . . , m2

(17)

for the SDP relaxation, and

L SD ;D < hP e , 2P e , i [ I (, ), , 5 1, . . . , mj0 0 , i , i 1

5 hP e , 2P e , i [ I (, )< I (, ), , 5 1, . . . , mj ,, i , i 2 1 
L S , ,D ;D < hb (u ), b (u ), i [ I (, ), , 5 1, . . . , mjk k i1 k i2 k 1

, ,
5 hb (u ), b (u ), i [ I (, )< I (, ), , 5 1, . . . , mj , i1 k i2 k 2 1

2 L L 2 S S3 (C , D , D );3 (C , D , D )<L k 0 k S k 0 k
, ,r2sf(x; C , P e , b (u )), r2sf(x; C , 2P e , b (u )) k , j j1 k k , j j2 kH Jj [ I (, ), , 5 1, . . . , m1

, ,r2sf(x; C , 2P e , b (u )), r2sf(x; C , P e , b (u )) k , i i1 k k , i i2 k
, ,5 r2sf(x; C , P e , b (u )), r2sf(x; C , 2P e , b (u ))k , j j1 k k , j j2 k5 6

i [ I (, ), j [ I (, ), , 5 1, . . . , m 2 1

(18)

for the lift-and project LP relaxation. We designate Algorithm 2.1 which takes
S S 2 2 S SD 5D , D 5D , 3 (C , D , D )53 (C , D , D ) and the SDP relaxation0 0 k k k 0 k S k 0 k

F̂(C , 3 <3 ) for C in Step 4 as DLSSDP-diag, while we designate Algorithm0 F k k11
L L 2 2 L L2.1 which takes D 5D , D 5D , 3 (C , D , D )53 (C , D , D ) and the0 0 k k k 0 k L k 0 k

Lˆlift-and-project LP relaxation F (C , 3 <3 ) for C in Step 4 as DLSLP-diag.0 F k k11

We will show how each quadratic function qf(?; g , q , Q ) of 3 is convexified, , , F
2 S Sin DLSSDP-diag with the help of quadratic functions of 3 (C , D , D ). First noteS k 0 k

that each coefficient matrix Q of the quadratic constraints of QOP (2) can be,
1 2 1expressed as Q 5Q 1Q using a positive semidefinite matrix Q and a, , , ,

2negative semidefinite matrix Q ;,

1 , T 2 , TQ ; O l (P e )(P e ) and Q ; O l (P e )(P e ) ., i , i , i , i , i , i
i[I (, ) i[I (, )1 2
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2 S SAs a nonnegatie combination of two functions of 3 (C , D , D ), we have anS k 0 k

‘atomic rank-1’ quadratic function

, ,
n (u ) n (u )i1 k i2 k, , ,]]] ]]]p (x); r2sf(x; C , 2P e , b (u ))1 r2sf(x; C , P e , b (u ))i k , i i1 k k , i i2 k2 sin u 2 sin uk k

T T , T ,
5 x (P e )(P e ) x 1 (a ) x 1b (i [ I (, )), i , i i i 2

, n ,for some a [R and b [R. Then, using these atomic rank-1 quadratic functionsi i
,p (x) (i [ I (, )), we can convexify the quadratic function qf(?; g , q , Q ) such thati 2 , , ,

T T , ,h (x)5 (g 1 2q x 1 x Q x)2 O l p (x), , , , i i
i[I (, )2 (19)T, , , , T 1

5 g 2 O l b 1 2q 2 O l a x 1 x Q x .6, i i , i i ,S D S D
i[I (, ) i[I (, )2 2

Thus we have obtained h (?)[ c.cone(3 <3 )> 4 , which induces a convex, F k 1

quadratic valid inequality h (x)< 0 for the feasible region F of QOP (2).,

To linearize the quadratic function qf(?; g , q , Q ) of 3 , we further need, , , F
2 L L 2 S Squadratic functions in the difference set 3 (C , D , D )\3 (C , D , D ). As aL k 0 k S k 0 k

nonnegative combination of two functions in this difference set, we have

, ,
n (u ) n (u )j1 k j2 k, , ,]]] ]]]p (x); r2sf(x; C , P e , b (u ))1 r2sf(x; C , 2P e , b (u ))j k , j j1 k k , j j2 k2 sin u 2 sin uk k

T T , T ,
52x (P e )(P e ) x 1 (a ) x 1b ( j [ I (, )), j , j j j 1

, n ,for some a [R and b [R. Now we obtain a linear function in c.cone(3 <j j F
2 L L3 (C , D , D )) such thatL k 0 k

, ,h̄ (x); h (x)1 O l p (x), , j j
j[I (, )1

T, , , , , , , ,
5 g 1 O l b 2 O l b 1 2q 1 O l a 2 O l a x ,6, j j i i , j j i iS D S D

j[I (, ) i[I (, ) j[I (, ) i[I (, )1 2 1 2

(20)

¯and an associated linear valid inequality h (x)< 0 for the feasible region F of QOP (2).,

Table 1 shows the number of SDPs or LPs to be solved at every iteration and the

Table 1. Comparison among four SCRMs

Methods [SDPs [LPs [Const.
2DLSSDP 2n 4n

m mDLSSDP-diag 2 o uI (, )u 2 o uI (, )u,51 2 ,51 2

2DLSLP 2n 4n
m mDLSLP-diag 2 o (uI (, )u1 uI (, )u) 2 o (uI (, )u1 uI (, )u),51 1 2 ,51 1 2
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number of constraints each problem has, comparing four variants of the SCRMs which
we have discussed so far. uPu denotes the number of elements contained in the set P. The
entries of Table 1 are computed as

2[SDPs5 uD u [LPs5 uD u and [Const.5 u3 (C , D , D )u .k k k 0 k

m mIt should be noted that o uI (, )u<o (uI (, )u1 uI (, )u)<mn. Hence, if m < 2n,51 2 ,51 1 2

holds between the number of constraints m and the number of variables n for QOP (2),
‘[Const.’ of DLSSDP-diag (or DLSLP-diag) is smaller than that of DLSSDP (or
DLSLP). In the test problems of QOP (2) of our numerical experiments reported in
Section 4, the number of SDPs (or LPs) to be solved in DLSSDP-diag (or DLSLP-diag)
is larger than that in DLSSDP (or DLSLP), while each problem generated by DLSSDP-
diag (or DLSLP-diag) has much less constraints than those generated by DLSSDP (or
DLSLP). We can confirm this fact in Tables 4 and 5 of Section 4.2.

3.2. A PARALLEL ALGORITHM

Algorithm 2.1 generates multiple LPs or SDPs at each iteration. Those LPs or SDPs
can be processed simultaneously in parallel. Here we consider a parallel im-
plementation of the algorithm on a client-server based parallel computing system as
Figure 3 shows. We suppose that we have a computer system consisting of one client
processor and V (<uD u) server processors; if we have more than uD u processorsk k

available, we only use the first uD u. At the kth iteration of a new parallel Algorithmk

3.1, the client processor allocate uD u LPs or SDPs of the formk

T
a(C , d)5maxhd x : x [C j (;d [D ) ,k k k

to V server processors. Thus, at the kth iteration, each server processor solves
roughly uD u /V problems in average. In the following parallel implementation ofk

Algorithm 2.1, the work of the client processor and that of each server processor are

Figure 3. The client–server based parallel computing system.
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described together, but each step is discriminated by the symbol (C) or (S); (C)
stands for the former and (S) for the latter.

ALGORITHM 3.1. (Parallel implementation of discretized-localized SCRMs)
Step 0 (C): Define D and D with some value u . Assign each d [D <D to an0 1 1 0 1

idle server processor among V server processors, and send data of d and
C to it.0

TStep 1 (S): Compute a(C , d)5maxhd x : x [C j for some d [D <D desig-0 0 0 1

nated by the client processor. Return a(C , d) to the client processor.0

Step 2 (C): Let C 5C and k 5 1.1 0

Step 3 (C): Compute an upper bound z for the maximum objective function valuek
Tof QOP (2) by z 5maxhc x : x [C j. If z satisfies some terminationk k k

criteria, then stop.
TStep 4 (C): Choose a direction-set D . Assign each LP or SDP maxhd x : x [C jk11 k

to an idle server processor; more specifically allocate each d [D tok11

an idle server processor, and send the data of d, C , D , a(C , d )0 0 0 0

(;d [D ), D and a(C , d ) (;d [D ) to it.0 0 k k k k k
2 LStep 5 (S): Generate 3 53 (C , D , D )<3 (C , D ), and define C .k k 0 k 0 0 k11

TStep 6 (S): Compute a(C , d)5maxhd x : x [C j. Return the valuek11 k11

a(C , d) to the client processor.k11

Step 7 (C): Let k 5 k 1 1 and go to Step 3 (C).

In our numerical experiments, we add the objective direction c to the set D andk
Tsolve a(C , c)5maxhc x : x [C j in some server processor. Then, in Step 3 (C),k k

we find a(C , c) among a(C , d) (d [D ), and set z 5a(C , c). Therefore, the workk k k k k

of the client processor is only to assign each LP or SDP to one of the V server
processors, to update a direction-set D , and to check whether z satisfies thek11 k

termination criteria. The client processor avoids the computation for not only
solving a bounding problem but constructing C (k 5 1, 2, . . .).k11

REMARK 3.2. In Step 5 (S), the common set 3 is generated in each serverk

processor. This redundant work is to reduce the communication time between the
client processor and each server processor. From our preliminary numerical results,
we found that sending all data of 3 from the client processor to each serverk

processor took much communication time. Therefore, it is better to reduce the
amount of data to be transmitted through the network as much as possible.

REMARK 3.3. If we have enough processors to handle uD u< uD u problems in0 k

parallel, it is better to solve all (uD u1 uD u) problems;0 k

T
a(C , d)5maxhd x : x [C j (;d [D <D )k k 0 k

at every kth iteration, and construct C using a(C , d) instead of a(C , d) fork11 k 0
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;d [D . Then we can obtain a tighter relaxation C of the nonconvex feasible0 k11

region F of QOP (2).

4. Computational experiments

In this section, we present our four kinds of test problems, describe some
implementation details on Algorithms 2.1 and 3.1, and report some encouraging
numerical results.

4.1. TEST PROBLEMS

We summarize some basic characteristics of our test problems in Tables 2 and 3.
They consist of four types of problems such as (a) 0–1 integer QOPs, (b) linearly
constrained QOPs, (c) bilevel QOPs, and (d) fractional QOPs. We transform these
four types of problems (a), (b), (c) and (d) into QOPs of the form (2). The type of
each test problem is denoted in the second column of Tables 2 and 3. The columns n
and m denote the number of variables and the number of constraints (not including
box constraints) of the transformed QOP (2), respectively. The column ‘[QC’
denotes the number of quadratic constraints among m constraints of QOP (2). The
last column gives the number of local optima for some types of the test problems.
We denote ‘?’ for cases where the number of local optima is not available. We know
optimal values for all test problems of Tables 2 and 3 in advance. We give more
precise description for problems (a)–(d) below.
(a) 0-1IQOP (0–1 integer QOP):

T nmin x Qx subject to x [ h0, 1j .

Table 2. Small size test problems

Problem Type Source n m [QC [Local

01int20 0-1IQOP [15] 21 21 21 ?
01int30 0-1IQOP [15] 31 31 31 ?

LC30-36 LCQOP [4] 31 46 1 36
LC30-162 LCQOP [4] 31 46 1 162
LC40-36 LCQOP [4] 41 61 1 6
LC30-72 LCQOP [4] 41 61 1 72
LC50-1296 LCQOP [4] 51 76 1 1296

BLevel3-6 BLQOP [3] 19 25 10 4
BLevel8-3 BLQOP [3] 21 22 10 4

Frac20-10 FQOP – 21 12 1 ?
Frac30-15 FQOP – 31 17 1 ?
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Table 3. Large size test problems

Problem Type Source n m [QC [Local

01int50 0-1IQOP [15] 51 51 51 ?
01int55 0-1IQOP [15] 56 56 56 ?
01int60 0-1IQOP [15] 61 61 61 ?

LC60-72 LCQOP [4] 61 91 1 72
LC70-72 LCQOP [4] 71 106 1 144
LC80-144 LCQOP [4] 81 121 1 144

BLevel30-4 BLQOP [3] 47 29 13 8
BLevel40-4 BLQOP [3] 57 29 13 8

Frac50-20 FQOP – 51 22 1 ?
Frac60-20 FQOP – 61 22 1 ?
Frac70-25 FQOP – 71 27 1 ?

We used the code of Pardalos and Rodgers [15] to generate coefficient matrices
Q of the test problems.

(b) LCQOP (Linearly constrained QOP):

T Tmin g 1 2q x 1 x Qx subject to Ax < b ,

n3n n n m m3nwhere Q [R , q [R , x [R , b [R and A[R . We generate each test
LCQOP by the code of Calamai et al. [4]. Their construction of LCQOP
provides not only its optimal solution but the number of its local minima.

(c) BLQOP (Bilevel QOP):

T Tmin g 1 2q z 1 z Qz
x

subject to
Tmin z Rz

y

x
subject to Az < b , z 5S D ,y

p q n m3n n nwhere x [R , y [R , z [R with n 5 p 1 q, A[R , Q [6 and R[6 .1 1

We generate each test BLQOP by the code of Calamai and L.N. Vincente [3].
See Takeda and Kojima [25] to know how to transform BLQOP into QOP (2).

(d) FQOP (Fractional QOP):

T1/2x Qx
]]]min g(x)5 Tq x 2g

Tsubject to Ax < b, q x > 3/2g .

n n m3nHere x [R , q [R , A[R , Q: n 3 n positive definite matrix and g; 1/
T 21 m 212q Q q. If we take a constant term b [R so that AQ q , b holds, the
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above FQOP has an optimal value 1. Indeed, note that FQOP is equivalent to
the problem finding l*> 0 such that p(l*)5 0, where

T T
p(l)5minh1/2x Qx 2l(q x 2g ) : x [Xj ,

(21)JTwhere X ;hx : Ax < b, q x > 3/2g j .

We see that the problem

T Tminh1/2x Qx 2 q x 1g j (22)

21has an optimal solution x*5Q q, since Q is a positive definite matrix. Then,
the optimal solution x* of (22) achieves p(1)5 0 for the problem (21), and
hence, FQOP generated by this technique has the optimal value l*5 g(x*)5 1.

4.2. NUMERICAL RESULTS

To execute Algorithms 2.1 and 3.1, it is necessary to clarify the issues (A) the value
u for D (k 5 1, 2, . . .), (B) termination criteria, and (C) SCRMs to be used.k k

(A) We start Algorithms 2.1 and 3.1 by constructing a direction-set D with1

u 5p /2. If the decrease uz 2 z u in bounds for the optimal value becomes1 k k21

small at the kth iteration of Algorithms 2.1 and 3.1, we choose some smaller
value than u for u , and reconstruct the direction-set D using the updatedk k11 k11

u . Otherwise, we use the same u 5u and the same direction-set D 5k11 k11 k k11

D for the next iteration. Throughout the computational experiments, we use thek

following rule for updating u :k
KLet , 5 1, u 5p /2, K 5 4 and hs j be a decreasing sequence such that1 j j51

8 4 2
] ] ]h1, , , j. If a bound z generated at the kth iteration for the optimal valuek9 9 9

remains to satisfy

uz 2 z uk21 k 23]]]]> 1.0 3s ,,maxhuz u, 1.0jk

then set u 5u . Else if , ,K, then set , 5 , 1 1 and u 5s u , whichk11 k k11 , 1

implies an update of D .k11
23(B) If , 5K and uz 2 z u /maxhuz u, 1.0j, 1.0 3s , we terminate the algo-k21 k k K

rithm with the best bound z for the optimal value.k

(C) We choose two SCRMs, a serial implementation of DLSLP and a parallel
implementation of DLSSDP-diag for comparison. The former is coincident with
the practical SCRM presented in the paper [24]. We also tried to compare them
with a serial implementation of DLSSDP to see the effectiveness of the
inequality reducing technique of DLSSDP-diag described in Section 3.1. When
u becomes small, however, each SDP subproblem of DLSSDP contains sok

many similar constraints, induced from the pairwise products of linear support-
ing functions with similar directions in D (defined by (9)), that our SDP solverk
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SDPA [7] used in DLSSDP and DLSSDP-diag encounters serious numerical
instabilities. Because of this reason, DLSSDP could not solve most of the test
problems of Tables 2 and 3. Even when DLSSDP did not fail, it required
tremendous cpu time. For example, DLSSDP could solve the problem
‘01int20’, which is one of the smallest size problems listed in Table 2, but it
required 40631 seconds, more than 10 hours. On the other hand, DLSSDP-diag
spent 1070 seconds for the same problem as shown below in Table 6. Therefore
we compare a parallel implementation of DLSSDP-diag only with a serial
implementation of DLSLP in the remainder of this section.

The programs of Algorithms 2.1 and 3.1 were coded in ANSI C11 language. We
used CPLEX Version 6.5 as an LP solver in DLSLP, and SDPAVersion 5.0 [7] as an
SDP solver in DLSSDP-diag. We implemented DLSSDP-diag on a parallel
computing system called Ninf (Network-based Information Library for high
performance computing) [18, 19]. The basic Ninf system supports client-server
based computing, and provides a global network-wide computing infrastructure for
high-performance numerical computation services. It intends not only to exploit high
performance in global network parallel computing, but also to provide a simple
programming interface similar to conventional function calls in existing languages.

Our experiments were conducted to see the following three factors: (i) com-
parison between DLSLP and DLSSDP-diag with respect to the number of problems
(LPs or SDPs) generated at every iteration and the size of each problem; (ii) the
accuracy of bounds obtained by DLSSDP-diag and DLSLP for optimal values; (iii)
computational efficiency of parallel DLSSDP-diag using 1, 2, 4, 8, 16, 32, 64 and
128 server processors.

(i) Tables 4 and 5 show the number of LPs ([LPs5 uD u) generated at eachk

iteration of DLSLP and the number of SDPs ([SDPs5 uD u) of DLSSDP-diag.k

Also, they show the number of constraints ([Tot const.5 u3 u1F-
2 Lu3 (C , D , D )u1 u3 (C , D )u in each problem. We see from these tables thatk 0 k 0 0

SDPs of DLSSDP-diag have much less constraints than LPs of DLSLP.
(ii) We summarize numerical results on a parallel implementation of DLSSDP-diag

in Tables 6 and 7, and summarize those on a serial implementation of DLSLP
in Table 8. We use the notation below in those tables: r.Err, the relative error of
a solution, i.e., r.Err 5 u f 2 f u /maxhu f u, 1.0j; f , the global optimal valueup opt opt opt

1of QOP (2); f , the best bound found by each algorithm for f ; r.Err , r.Errup opt

at the first iteration; r.Err*, r.Err at the last iteration; iter., the number of
iterations each algorithm repeated; R.time, the real time in second; C.time, the
cpu time in second.

We ran DLSSDP-diag using 128 processors of 64 server machines and one
processor of a client machine. We slightly modified Algorithm 3.1 according to
what we have mentioned in Remark 3.3 so that the modified algorithm
generates (uD u1 uD u) SDPs at every iteration. Note that the number (uD u10 k 0

uD u) is almost twice of [SDPs described in Tables 4 and 5. Tables 6 and 7k
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Table 4. LPs and SDPs generated by DLSLP and DLSSDP-diag for small size test
problems

Problem DLSLP DLSSDP-diag

[LPs [Tot const. [SDPs [Tot const.- -

01int20 40 1621 81 122
01int30 60 3631 117 178

LC30-36 60 3646 61 137
LC30-162 60 3646 61 137
LC40-6 80 6461 81 182
LC40-72 80 6461 81 182

BLevel3-6 36 1321 55 98
BLevel8-3 40 1622 59 101

Frac20-10 40 1612 43 76
Frac30-15 60 3617 63 110

include not only solution information achieved by DLSSDP-diag but time
information such as C ⇒ S (the total transmitting time from the client processor
to each server processor), exec.time (the total execution time on server
processors), and S ⇒ C (the total transmitting time from each server processor
to the client processor). These time data were measured in real time. As we
stated in Remark 3.2, a small amount of data are transmitted through a network

Table 5. LPs and SDPs generated by DLSLP and DLSSDP-diag for large size test
problems

Problem DLSLP DLSSDP-diag

[LPs [Tot const. [SDPs [Tot const.- -

01int50 100 10051 201 302
01int55 110 12156 221 332
01int60 120 14461 241 362

LC60-72 120 14491 121 272
LC70-72 140 19706 141 317
LC80-144 160 25721 161 362

BLevel30-4 92 8493 117 192
BLevel40-4 112 12573 137 222

Frac50-20 100 10022 103 175
Frac60-20 120 14422 123 205
Frac70-25 140 19627 143 240
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Table 6. Numerical results of DLSSDP-diag on a PC cluster (small size test problems)

Problem DLSSDP-diag Time Info (s)
1r.Err r.Err* iter. R.time (s) C ⇒ S exec.time S ⇒ C

01int20 8.34 6.23 6 24 0.07 1070 0.06
01int30 6.20 2.98 6 58 0.11 5811 0.10

LC30-36 100.00 5.30 9 28 0.09 1319 0.09
LC30-162 100.00 27.42 18 55 0.18 2790 0.20
LC40-6 100.00 0.89 8 43 0.12 3292 0.13
LC40-72 100.00 4.14 9 52 0.14 3783 0.14

BLevel3-6 6.53 2.44 13 18 0.11 847 0.10
BLevel8-3 6.53 2.45 13 28 0.12 1114 0.14

Frac20-10 89.36 0.92 27 54 0.22 3166 0.18
Frac30-15 89.58 0.88 26 345 0.37 25913 0.35

in the parallel implementation of DLSSDP-diag, so that we can take little
notice of transmitting time between client and server processors.

Table 8 presents our numerical results on a serial implementation of DLSLP.
DLSLP cannot deal with the large size test QOPs of Table 5 due to the
shortage of memory on our computational environment. Thus we show our
numerical results of DLSLP restricted to the small size test QOPs.

Table 7. Numerical results of DLSSDP-diag on a PC cluster (large size test problems)

Problem DLSSDP-diag Time Info (s)
1r.Err r.Err* iter. R.time (s) C ⇒ S exec.time S ⇒ C

01int50 107.40 104.74 3 267 0.17 26127 0.12
01int55 100.15 75.37 5 905 0.31 86000 0.23
01int60 105.20 102.53 3 607 0.22 65560 0.15

LC60-72 100.00 3.13 8 171 0.22 12627 0.20
LC70-72 100.00 2.78 8 183 0.27 18601 0.24
LC80-144 123.70 2.94 8 406 0.44 35000 0.32

BLevel30-4 12.41 8.75 13 167 0.29 11326 0.27
BLevel40-4 12.40 9.08 12 230 0.33 192970 0.27

Frac50-20 89.50 0.94 26 3200 0.75 305002 0.78
Frac60-20 89.53 0.97 26 6318 1.30 734037 0.98
Frac70-25 89.37 1.50 25 14196 1.72 1483764 1.21

DLSSDP-diag is executed on the PC cluster consisting of one client machine and 64 server machines
with 128 processors. Each server machine has two processors (CPU Pentium III 800 MHz) with
640 MB memory.
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Table 8. Numerical results of DLSLP on a single processor (small size test problems)

Problem DLSLP
1r.Err r.Err* iter. C.time (s)

01int20 51.40 48.84 6 50.90
01int30 1.90 1.90 5 36.53

LC30-36 51.45 38.22 9 185.03
LC30-162 74.45 58.15 11 215.83
LC40-6 38.09 27.45 9 454.22
LC40-72 57.53 44.77 9 548.88

BLevel3-6 100.00 43.99 39 86.50
BLevel8-3 100.00 100.00 5 19.97

Frac20-10 100.00 100.00 5 18.58
Frac30-15 100.00 100.00 5 149.15

DLSLP is implemented on one processor of DEC Alpha Workstation (CPU 600 MHz, 1 GB memory).

From comparison between Table 6 and Table 8, we see that the bounds for
optimal values obtained in DLSSDP-diag are more accurate than those in
DLSLP in most cases. Especially for fractional QOPs, DLSSDP-diag improves
bounds for optimal values significantly, compared with DLSLP. Therefore we
expect DLSSDP-diag to be a practical bounding method for some difficult
nonconvex QOPs, if enough processors for a parallel implementation are
available. On the other hand, DLSLP has the merit that it attains a bound for
the optimal value fast as Table 8 shows. We have no choice but to use different
processors for numerical experiments of DLSSDP-diag and DLSLP due to the
commercial license of the CPLEX software, so that comparison in computa-
tional time between these two methods would be ambiguous.

Table 9. Computational efficiency by increasing the number of processors

[Proc. LC80-144 Frac50-20

R.time (s) Ratio R.time (s) Ratio

1 33125 1.00 289259 1.00
2 16473 2.01 145980 1.98
4 8238 4.02 72343 3.99
8 4145 7.99 36272 7.97

16 2099 15.78 18595 15.56
32 1118 29.62 0424 30.69
64 624 53.08 4822 60.00

128 361 91.76 3200 90.39

DLSSDP-diag is executed on the PC cluster consisting of one client machine and 64 server machines
with 128 processors. Each server machine has two processors (CPU Pentium III 800 MHz) with
640 MB memory.
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(iii) Table 9 shows computational efficiency in proportion to the number of server
processors. The ‘Ratio’ stands for R.time of ([proc.5 1) divided by R.time of
([proc.5 k). If the ratio is sufficiently close to k (5[proc.), we may regard
Algorithm 3.1 as well paralleled. As Table 9 shows, the algorithm is well
paralleled with relatively small number of [proc., since the number of SDPs is
sufficiently large in comparison with [proc. so that such SDPs are allocated to
each server processor in balance and the total computational time consumed by
each server machine is almost the same. Therefore a good performance of
parallel computation is attained.

5. Concluding remarks

We have proposed DLSSDP-diag, a new variant of discretized-localized successive
SDP relaxation methods for QOP (2) which is suitable for a parallel implementation.
The numerical results have demonstrated that DLSSDP-diag implemented in a
client–server-based parallel computing system obtains better bounds for optimal
values in most test problems than DLSLP, a serial variant of discretized-localized
successive lift-and-project LP relaxation methods. The key feature of DLSSDP-diag
is an effective construction of SDP relaxations based on the eigenvalue structure of
the coefficient matrices Q (, 5 1, 2, . . . , m) of the constraint inequalities of QOP,

(2), which considerably reduces the number of constraints involved in the SDPs to
be solved at each iteration. This makes DLSSDP-diag handle larger size test QOPs
than ones DLSLP can attack. As the first parallel implementation of successive
convex relaxation methods, our numerical experiment is satisfactory.

In general, the SDP relaxation is much more expensive than the LP relaxation
although the former is known to attain better bounds for optimal values than the
latter. Furthermore the number of relaxed SDPs to be solved at each iteration of
DLSSDP-diag increases as the number of negative eigenvalues involved in the
constraint coefficient matrices Q (, 5 1, 2, . . . , m) increases. Therefore a powerful,

parallel computing facility is inevitable to apply DLSSDP-diag to highly nonconvex
large size QOPs. If computer environment develops further in future, DLSSDP-diag
can be a practical bounding method for optimal values of such QOPs. At present, a
practical compromise may be to use DLSSDP-diag in the branch-and-bound
framework; we can terminate DLSSDP-diag within a few iteration to get a relatively
good bound for the optimal value of a QOP, branch the QOP into multiple
subproblems, and then apply DLSSDP-diag to each subproblem. The numerical
results of the paper [24] show that the drastic decrease of the relative error occurs at
an early stage of the execution of DLSLP.
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[9] Kojima, M. and Tunçel, L. (2000), Cones of Matrices and Successive Convex Relaxations of
Nonconvex Sets, SIAM Journal on Optimization 10, 750–778.
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